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Abstract. We introduce an agility measure enabling the comparison
of two very di↵erent leaping-from-rest transitions by two comparably
powered but morphologically di↵erent legged robots. We use the measure
to show that a flexible spine outperforms a rigid back in the leaping-
from-rest task. The agility measure also sheds light on the source of this
benefit: core actuation through a su�ciently powerful parallel elastic
actuated spine outperforms a similar power budget applied either only
to preload the spine or only to actuate the spine during the leap, as well
as a rigid backed configuration of the identical machine.
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1 Introduction

The past decades’ slow trickle of dynamical legged robots has grown to a stream
of academic [1] and commercial [2] advances yielding an emerging set of design
and control principles su�cient for steady-state locomotion [3–9]. In contrast,
leaping, dodging, recovering and similar transitional mobility behaviors charac-
teristic of animals’ explosive agility — the intuitive motivation for legs — has
received much less attention. Recent interest in such transitional legged behav-
iors [10–15] is impeded by the lack of a well-formulated theory alongside the
absence of appropriate performance metrics.

In this paper we propose a pair of measures for nimble legged transitions
that help organize a suite of experiments designed to test hypotheses about the
comparative benefits of specific morphological features. In Section 2 we introduce
a candidate measure of specific agility, counterposed with a measure of endurance
with the goal of quantifying the transitional performance of legged platforms
across di↵erent scales, morphologies, power resources, and operating points. We
use these measures in Section 3 to compare the empirical performance of two
comparably powered but morphologically di↵erent robots, Canid [16] and XRL
[17], in a leaping-from-rest transition, and to reach the judgement in Section
Section 4 that Canid’s parallel elastic-actuated spine confers greater leaping
agility. We review the main experimental insights in Section 5 and comment on
future work.
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2 Technical Approach: Specific Agility and Endurance

Legged agility has not yet been formally defined in the robotics literature so for
this paper we explore the implications of a well-cited definition within the sports
science community holding that agility is “a rapid whole-body movement with
change of velocity or direction in response to a stimulus” [18].

Notwithstanding the many informative and inspiring studies of legged ani-
mal performance, e.g. [19–25], we have not been able to find any formalization
of this idea suitable for comparing robots of di↵erent morphologies and di↵erent
sizes over di↵erent tasks. Perhaps the most common measure for acceleration
and leaping used in the legged biology literature is specific power (watts per
kilogram taken over a gait cycle of leg power output relative to leg muscle mass
or body mass) [22, 26–28] but it is not scale invariant as we observe in Appendix
2. Specific work has been proposed as a measure for legged leaping with respect
to muscle mass [22], and this seems closest to the body mass normalized mea-
sure we will introduce below. In contrast, characterizing directional aspects of
agility performance seems trickier. Animal turning maneuvers have been stud-
ied in robotics [29] as well as biology [30] yielding a variety of useful associated
performance measures such as turning radius at speed, leg e↵ectiveness, linear
maneuverability number [31], and usage of braking/acceleration forces [32]. But
it is not clear to us how to generalize such measures for reasons we will discuss
below as well.

Many intuitive measures for a legged platform involving, say, jumping height
or the magnitude of linear acceleration, are equivalent to a change in kinetic
and gravitational potential energy during the stance phase of locomotion. Thus,
we focus our proposed measure on the change in what we term the extrinsic
body energy, the sum of the mass center’s kinetic and gravitational potential
energy, relative to the natural unit over which a legged platform can adjust
it, a single, isolated stance. We use the qualifier “extrinsic” to distinguish this
notion from the body energy introduced in [16] that is sensitive to the state
of a platform’s internal mechanical springs. Catapult-like elastic energy storage
used to augment muscle power in leaping from rest has been shown to occur
in animals across widely di↵erent scales [33, 21] and, intuitively, we feel such
use of initially stored spring energy should not count against the agility of a
transition. We also avoid the notion of “stride” which connotes a regularity of
stance and swing that may not prevail in sudden legged maneuvers characterized
by combinatorial sequences of leg contacts [10]. Instead, we construe “stance” as
the dimensionless event characterized by some number of legs in ground contact,
punctuated either by a prior or subsequent aerial phase (or both).

Thus, for present purposes, we find it useful to introduce a working notion of
specific agility during stance in terms of the mass-normalized change in extrinsic
body energy:

↵ :=
�W

m
/stance event, (1)
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where �W is the extrinsic body energy (the sum of the mass center’s kinetic
and gravitational potential energy) at the end of stance minus the extrinsic body
energy at the start stance1 2, and m is the mass of the agent. The SI units of ↵
are (m/s)2 and can be interpreted as mass-specific work in the equivalent units
of (J/kg).

As we have tried to suggest in our brief survey of the extensive literature,
and seems most carefully summarized in [34], it does not appear straightforward
to find a single dimensionless group capable of capturing all relevant aspects of
maneuverability and agility. We tolerate the lack of a dimensionless measure in
our quantification of agility because mass-specific work seems to be the funda-
mental quantity of interest — at least for changes in velocity magnitude. For
example, measuring work done on the body during stance is sensitive to acceler-
ations along a velocity vector fixed in the inertial frame and takes into account
the operating point, capturing the greater energetic cost of accelerating a given
amount at higher relative to lower speeds (such energetic costs are consistent
with biological observations of animal accelerating and braking [26]). However,
it does not reward purely directional changes even though, intuitively, rapid
turns ought to represent a similarly important concomitant of any comprehen-
sive “agility” measure. Any attempt to reconcile nimble turning with energetic
expressions of performance must address the fact that fixed rate circular motion
entails no work since the direction of motion is orthogonal to the force.

The proposed measure (1) does appear to confer some scale invariance. In
biology, this is predicted by arguments found in [35] and empirical observations
of vertical jumping height known as Borelli’s law [36]. This ‘law’ is demonstrated
in animals across eight orders of magnitude mass variation which are shown to
have vertical jumping heights (proportional to specific agility if air resistance
is neglected) within a factor of three — ranging from around 20 to 60 cm or
a specifc agility of around 2 to 6 m2/s2. Similar arguments about the scale
invariance of this measure with electromagnetic actuators in a robotic leg are
detailed in Appendix 2.

The operational utility of an agile motion will generally depend on the num-
ber of times n it can be performed in succession – which we term endurance.
Given resource constraints present in executing a movement, we expect en-
durance to decrease with increasing specific agility. For example a robot that
heats its motors to its thermal limits in a single leap cannot immediately per-
form the same leap on the next step; it must wait until its motors cool before
completing the action again, giving it an n of 1. A robot capable of performing an
agile motion an infinite number of times (unlikely with current technology given

1 Steady state motions such as running or hopping that can be approximated with
Hamiltonian systems will have negligible agility according to our metric in accor-
dance with biological observations that these motions require significantly less muscle
power output as compared to leaping accelerations [28, 22].

2 Likely it will be useful in later work to consider a notion of integrated specific agility
accumulated over a sequence of stance events, such as when evaluating the agility
of an accelerating bound containing a brief aerial phase between front and rear leg-
ground contacts.
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limited energy storage) would have an n of 1. Although “stance event” was in-
troduced as taking integer values, we find it convenient to recast the measure as
taking (extended) real values. Specifically, we outline in Appendix 1 our appeal
to a motor thermal model as a means of estimating how much time our actuators
might be able to sustain the maneuver under consideration, and thereby back
out an equivalent real estimate of the predicted number of viable stance events.
Thus we will consider the ordered real pair (↵, n) when evaluating agile motions
in an experimental setting.

3 Experiments and Results

We use this framework to compare the performance of Canid [16] and XRL [17],
in the open-loop leaping-from-rest task, a transitional behavior of near ubiqui-
tous value, e.g. in gap crossing or rapid preparation [37] of high energy steady-
state gait basins [38]. We use this comparison to examine the relevant benefit of
distal versus core actuation as the quadrupedal Canid uses two motors to actu-
ate its spine while the hexapedal XRL uses these two motors to actuate a pair
of additional legs. This comparison seems particularly apt because of the close
relationship between the two machines described in [17]: both robots have the
same electronics, use similar motors and gearing, and are capable of comparable
(respecting speed and specific resistance) steady-state locomotion as suggested
in the accompanying video and partially documented in [16]. Disregarding the
spine, the platforms di↵er primarily in their mass — Canid weighs 11.3 kg while
XRL weights 7.3 kg — and leg actuation as Canid’s four hip actuators drive their
C-legs through a four-bar linkage while XRL directly actuates its six C-legs. It is
worth noting the enabling role the specific agility measure plays in allowing this
comparison that requires somehow normalizing for the very di↵erent actuation
strategies used by these two nominally similar machines during forward leaping.
Canid only uses 3 of its 6 motors (actuating its rear 2 legs and the top spine
cables), while XRL uses 4 of its 6 motors (2 are not used since they contribute
little to leaping [10]).

Canid leapt 11 times under a motion capture system3, including 5 times
across an 85cm gap which is close to the observed limit of its repeatable leap-
ing ability from standstill (leaps over gaps up to 1m across have been achieved
however not in a repeatable fashion). XRL leaping data for this paper was taken
from [39] during which parameters for quadrupedal forward leaping were system-
atically varied to search for various high extrinsic body energy forward leaps.
The best XRL forward leap crossed a 50cm gap, which is likely very close to the
limit of its leaping ability from standstill.

3 Vicon motion capture data is used to back out the kinetic and potential energy of
the robots. Neglecting air resistance, the apex specific extrinsic body energy minus
the starting specific extrinsic body energy gives a very close approximation to the
specific agility (1) of the leap. The method used to calculate endurance is given in
Appendix 1.
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Hypotheses Supporting Evidence

H1

Replacing a rigid back with a suf-
ficiently powered spine mechanism
can provide a significant morpholog-
ical advantage for forward leaping
agility.

Su�ciently powered (either through ac-
tuation or releasing initially stored elas-
tic energy) non-rigid spine leaping perfor-
mance is significantly better than with a
rigid spine.

H2

Spine elastic energy release and
spine actuation benefit leaping
agility both individually as well as
in combination.

Motor energy output alone cannot ac-
count for the change in extrinsic body en-
ergy upon leaping with a non-rigid elas-
tic spine, and increasing spine motor cur-
rent limits monotonically increases spe-
cific agility. Additionally leaping with a
full-powered spine and a “tuned” sti↵ness
significantly outperforms leaping with a
purely actuated or purely passive spine.

H3

A four-bar transmission increases
agility in forward leaping at the ex-
pense of reducing the number of
other behaviors the robot can per-
form well.

H3 would be supported if the four-bar
diminishes agility of XRL leaping along
particular directions relative to others.

Table 1. Hypotheses regarding the performance of Canid and XRL and the proposed
series of experiments to support or refute them. Hypotheses 1-2 were shown to be
consistent with experimental data from this paper and Hypothesis 3 is the subject of
further experiments presently underway.

Hypothesis 2: Both spine elastic energy release and spine actuation
benefit leaping agility

Active and Passive Spine Elements in Isolation Figure 2 shows that
the k = 1.82 Nm/rad spine with no actuation outperforms the fully actuated
negligible sti↵ness k = 0.14 Nm/rad spine as well as the rigid spine (both of
which initially store a negligible amount of initial elastic energy). The rear legs
in the k = 1.82 Nm/rad spine case with no spine actuation output on average
65 J of work per leap of which less than 49 J get transferred into the extrinsic
body energy due to the rear leg maximum gearbox e�ciency of 75% — an
overestimate of the true transmission e�ciency because we are not accounting
the actual gearbox e�ciency nor other sources of transmission friction as they
are di�cult to measure. However the change in extrinsic body energy of these
runs averaged 54 J, leaving at least 5 J unaccounted for by the rear legs. Since
the only other source of energy in the k = 1.82 Nm/rad spine case is the initially
stored spine elastic energy, this indicates that initial elastic energy stored in
spine bending contributes to forward leaping agility.

There is a monotonic average increase in agility with increased spine actu-
ation power for the runs shown in Figure 2. The decreasing e�cacy of motor
torque attested by the saturating contours of Figure 2 reflects the no-load speed
regime into which the actuators are quickly driven by the rapidly extending
spine. Clearly the spine motors can be geared lower to achieve higher agility
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at the expense of decreasing endurance for this behavior — as will be taken
into account in future Canid design iterations. Notice, as well, at the low end of
spine sti↵ness, that Canid is unable to leap at all without spine actuation. Both
observations indicate that the spine motors are directly contributing to forward
leaping agility irrespective of spine elastic sti↵ness — except for of course in the
rigid case.

The above results show an individual leaping benefit of spine elastic energy
and spine actuation. This should come as no surprise since spine elastic energy
release and actuation both augment the available mechanical power output of
the machine.

Active and Passive Spine Elements in Parallel Combination
The greatest observed forward leaping performance was achieved with the k

= 0.91 Nm/rad and k = 1.82 Nm/rad spines using the highest spine actuator
current limits, averaging a specific agility of 4.7 m2/s2. The best purely actuated
spine and purely elastic spine experiments on the other hand were only able
to achieve specific agilities of 2.6 m2/s2 and 3.5 m2/s2, respectively. The best
“tuned” parallel elastic-actuated spines thus outperform the purely actuated
spine by 81% and the purely elastic spine by 34%. This is likely because the
nature of parallel elastic-actuations allows the release of the elastic energy stored
in the spine to augment the spine motor power during the leap. These results
support our hypothesis that using parallel elastic spine actuation outperforms
both a purely actuated and purely elastic spine in forward leaping.

However if e�ciency is deemed more important than raw agility then the
performance using the unactuated k = 1.82 Nm/rad spine shown in Figure 3
demonstrates that a su�ciently sti↵ spine, if properly pre-loaded in stance (ei-
ther by motors or by a prior maneuver) may o↵er almost similar agility with
considerably greater e�ciency. We also note that although at lower actuator
limits the k = 1.82 Nm/rad spine clearly outperforms the k = 0.91 Nm/rad
spine, this advantage diminishes as the actuator limits are increased. We are
not sure if this reflects the beginning of the “crest” of the “sweet spot” specific
agility ridge whose diminishing “other side” is evidenced in these preliminary
experiments only by the most extreme k = 1 Nm/rad case. This “sweet spot”
is defined by spine sti↵ness that results in motor torque saturation at the ini-
tial spine angular displacement flexion, as this sti↵ness will store the maximal
amount of initial elastic energy. Further experiments are now in progress with
still sti↵er (but not quite rigid) spines to better fill in the other side of the ridge.

5 Conclusions and Future Work

Specific agility, the mass-specific change in extrinsic body energy accomplished
during a stance event, provides a comparative measure for quantifying perfor-
mance of transitional behaviors such as jumping and accelerating across di↵erent
platforms using di↵erent power budgets. Pairing this measure with endurance,
the number of times a transition can be repeated given resource limitations,
provides a clearer picture of a robot’s useful operational agility.
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Leaping experiments suggest that a significant benefit is conferred by adding
a four-bar and a parallel elastic actuated spine [16] to the base XRL robot at no
cost to endurance. Further investigation into characterizing the isolated benefit
of the spine concluded that — all else being equal — replacing a rigid back with
a su�ciently powered spine mechanism (either through releasing initially stored
elastic energy or through actuation) can provide a significant morphological ad-
vantage for forward leaping agility. There was a measurable individual specific
agility contribution from both spine actuation and releasing stored elastic en-
ergy in the spine. Furthermore, a parallel-elastic actuated spine confers a larger
specific agility benefit to forward leaping than does a purely actuated or purely
passive spine. In conclusion, a parallel elastic actuated spine morphology shows
a significant agility advantage in forward leaping as compared to a rigid back.
Experiments are now in progress to quantify the relative benefit conferred by the
addition of a leg four-bar transmission in Canid. Future work will concentrate
on comparing the relative benefit of core actuation using a spine to using the
same motors instead for additional distal leg actuation.

We are still in the early stages of understanding how to characterize legged
agility. Following the tradition of the more mature aircraft [40], aquatic [34],
and wheeled [41] vehicle literatures (wherein variously dimensioned agility and
maneuverability measures are introduced for di↵erent purposes and at di↵erent
operating points), we explore the utility of a dimensional measure (m2/s2) that
at the very least proves useful for comparing legged leaps from rest of di↵erent
machines. Given its (rough) invariance across animal leaping maneuvers, this
measure may also have relevance for probing biological energetics. Most imme-
diately, we aim to apply insights provided by the empirical support or refutation
of our stated hypotheses toward the design of more agile machines.

Our narrow focus on legged performance presently ignores the fascinating
broader question of how to compare agility of such hybrid locomotory platforms
against those employing a persistent stance (e.g. cars [42, 43, 41] or boats [34]) or
aerial (e.g. jets [40, 34, 44–47]) phase — or even against legged platforms whose
limbed manipulation of inertia or momentum in flight significantly enhances
their terrestrial locomotory prowess [11]. We trust that further debate and study
within the robotics research community along the lines we introduce here will
help advance that important goal.

Appendix 1: Endurance Calculations

The endurance of each leap is calculated as follows. The thermal temperature rise
�Ti incurred by each motor i 2 I during the leap is calculated via the thermal
model described in Figure 5 of [48]. Let TF denote the failure temperature of
motor i and let Ti0 denote the motor i’s initial temperature before the leap. The
number of times ni that motor i can perform the leap is approximated by:

ni =
TF � Ti0

�Ti
.
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The endurance of the leap is then given by the lowest individual motor en-
durance, or:

n = infi2I (ni)

= infi2I

⇣TF � Ti0

�Ti

⌘
,

so as to extrapolate how many times the leap can be performed sequentially
before thermal failure since thermal capacity represents the limiting resource
for both Canid and XRL. This method allows us to sidestep the need to run
repeated experiments pushing the thermal limits for each machine in order to
calculate endurance which would risk motor damage.

Appendix 2: Energy and Power Density for Legged EM
Actuators

Assuming that EM motors produce a magnetic field of uniform density, the mo-
tor creates force by having this field interact with permanent magnets. This
interaction occurs over some area (the air gap) and so is proportional to l2. As-
suming that the motor does work by rotating through a fixed angle, the trans-
formed displacement through a leg of arbitrary geometry will scale according to
the characteristic length, l. The energy produced by the motor (the work done)
is therefore proportional to l3, so for constant density, specific energy is scale
invariant.

Power density scaling is originally presented in [35] pages 176-181, but will
be reworked below with more detailed scaling analysis. Assuming energy density
is mass-invariant in an actuator, the power density scaling will be considered
for a hopping task. Neglecting air resistance the apex height will be constant,
and so it follows that the lifto↵ velocity, vf , will also be constant. Assuming
the system starts crouched at rest, the leg must go through a fixed extension,
l, and accelerate the body to vf . Assuming constant acceleration, a, vf = at
and l = 1

2at
2 where t is the time the system is in contact with the ground.

Substituting for a, l = 1
2vf t. Since vf is constant, t scales according to l. Given

constant energy density, power density then scales according to l�1. This means
that for specific energy to remain performance limiting, specific power must scale
according to l�1. This is in sharp contrast to [49] where specific power scales
according to l0.5 in support of maintaining dynamic similarity with respect to the
pendulous motion of a swinging body characteristic of certain animal climbers
[50].
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